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A rational function r"lz) is said to be oftype (p., v) if it is of the form

r"v(z) = p,,(z)jqlz), qv(z) =1= 0,

where p,,(z) is a polynomial of degree at most I-' and qlz) is a polynomial of
degree at most v. To each functionf(z), analytic at z = 0, there corresponds
a doubly-infinite array known as the Pade table [2, Section 73] whose entries
are rational functions R"lz) which interpolate to fez) in the origin. For each
pair (p., v), the rational function R"v(z), of type (p., v), is chosen so that
fez) - R"lz) has a zero of the highest possible order at z = O. Concerning
the convergence of these Pade rational functions we have the following
important result of R. de Montessus de Ballore [1]:

THEOREM 1. Let fez) be analytic at z = 0 and meromorphic with precisely
v poles (multiplicity counted) in the disk I z I < T. Let D denote the domain
obtainedfrom I z I < T by deleting the vpoles off(z). Then,for all n sufficiently
large, there exists a unique rational function Rnlz), of type (n, v), which
interpolates to fez) in the point z = 0 considered of multiplicity n + v + 1.
Each Rnlz) has precisely v finite poles and, as n~ 00, these poles approach,
respectively, the v poles offez) in I z I < T. The sequence Rnlz) converges to
fez) throughout D, uniformly on any compact subset ofD.

To prove Theorem 1, Montessus de Ballore used Hadamard's classical
results on the location of the polar singularities of a function represented by
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a Taylor series. In the present paper, using only elementary methods from
the theory of interpolation, we prove the following generalization of
Theorem 1 (cf. [3, Theorem 3]):

THEOREM 2. Let E be a closed bounded point set whose complement K
(With respect to the extended plane) is connected and regular in the sense that
Kpossesses a Green'sfunction G(z) with pole at infinity. Let Fa (a> 1) denote
generically the locus G(z) = log a, and denote by Ea the interior of Fa. Let
the points

a(o)
!"1 ,

a(I) a(I)
!"1 '!"2 ,

(1)

a(n) a(n) a(n)
!"1 '!"2 , ... , !"n+1 ,

(which may not all be distinct) have no limit point exterior to E and satisfy the
relation

I

n+1 11/ n
lim IT (z - f3~n» = Ll exp G(z),
n-+oo

i=l

(2)

uniformly in z on each closed bounded subset of K, where Ll is the transfinite
diameter [4, §4.4] ofE.

Suppose that thefunction j (z) is analytic on E and meromorphic with precisely
v poles in E" (p > 1). Let D" denote the region obtained from E" by deleting
the v poles ofj (z). Then for all n sufficiently large there exists a unique rational
function rn.(z), of type (n, v), which interpolates to j(z) in the points f3in+v

),

f3~n+V),... , f3~~t~l' Each rnv(z) has precisely v finite poles and, as n -+ 00, these
poles approach, respectively, the v poles of j(z) in E". The sequence rn.(z)
converges to j(z) throughout D", uniformly on any compact subset ofD".

If j(z) is defined as in Theorem 1, we can choose p > 1 so large that j(z)
is analytic on E: I z I ~ Tip. Then, by taking all the points (1) to be zero,
we deduce Theorem 1 as a special case of Theorem 2.

ProofofTheorem 2. Let (Xl, (X2 , ... , (Xv be the v poles ofj(z) in E" and set

Qo(z) = 1,
k

Qk(Z) = IT (z - (Xi),

i=l

1 ~ k ~ v.

Put

qn(Z) = ±a~n)Qk_1(Z) + Qv(Z) ,
k=l
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and let 7T..(Z) be the unique polynomial of degree at most n + v which
interpolates to the analytic function q..(z) Qv(z)f(z) in the points
f31MV

), ••• , f3~~~~l . We shall choose the coefficients a~"), 1 ~ k ~ v, so that the
polynomial Q.(z) is a factor of 7T..(Z). To show that this is indeed possible, let
R, 1 < R < p, be such that the poles (Xl, ... , (Xv all lie in ER • For n sufficiently
large, we have by the Hermite formula [4, p. 50]

h ( ) - nn+v+l ( Q(n+v»)were w..+v z - i=l Z - I-'i •

Suppose, first, that the (X) are all distinct, i.e., fez) has only simple poles in
Ep • Then Qv(z) is a factor of 7Tn(Z) if and only if

±e:;)akn) = din),
k~l

where

j = 1,2,... , v, (3)

From (2) we deduce that

1· (n) 1 J
1m e;k = r

n->OO 7Tl r
R

Qk-l(t) Qv(t)f(t) d
t,

t - (X;
1 ~j,k ~ v,

and, by Cauchy's integral theorem, we have

J Qk-l(t) Q.(t)f(t) dt = 0,
r t - (X; # 0,

R

Hence,

for k > j,
for k = j.

tim det[e~;)] = r1~ J QI-l(t) Qv(t)f(t) dt =1= 0, (4)
n->oo ' 1=1 27Tl r

R
t - (XI

and, so, for n sufficiently large, the linear system (3) can be solved uniquely
for the coefficients a~n). Furthermore, since dJn) --+- 0 as n --+- 00, it follows
from (4) and Cramer's rule that, for each k, 1 ~ k ~ v, we have a~n) --+- 0 as
n --+- 00.
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(5)

uniformly on each bounded subset of the plane.
We consider now the case where f(z) has at least one multiple pole in Ep •

Suppose, for the sake of definiteness, that al is a pole of order fL(?;:2) of
f(z), i.e., al = a2 = ... = a,.. The polynomial Qv(z) is a factor of 7Tn(Z) if
and only if the coefficients alcnl satisfy the linear system

±e}~)a~n) = D}n),
k~l

j = 1,2,... , v, (6)

the first fL equations of which are obtained by setting the derivatives 7Tn (al),
7Tn'(al), ... ,7T:;-ll(aJ equal to zero. As in the case of simple poles it is easy to
show each sequence {q~l}:=o has a limit, say eik , and that these limits
satisfy eii =1= 0, eik = °for k > j. In particular, we have

- (j - I)! Ieik - 2'
7T1 r

R

Qk-l(t) Qv(t)f(t) dt
(t - al)i ,

1 ~ k ~ v.

Thus, limn....oo det [q;l] = n~~l ell =1= 0, and, so, the system (6) can also be
solved uniquely for the a~n). Furthermore, (5) remains valid.

Now set 'n.(z) - 7Tn(Z)jqn(z) Qiz). Then by our choice of the coefficients
a~n), we have that 'niz) is a rational function of type (n, v). Moreover, since
the points ai lie exterior to E, it follows from (5) that, for n sufficiently large,

( ) . d'ff! f h f h . Qln+v) Q(n+v) Hqn Z IS 1 erent rom zero at eac 0 t e pomts 1-'1 '0'0' I-'n+v+1 . ence,
, niz) must interpolate to fez) in these points.

If Snv(z) is another rational function of type (n, v) which interpolates to f (z)
. h ° Q(n+v) Q(n+vl h h diff! ( ) ( ) . ° Im t e pomts 1-'1 , ... , I-'n+v+1' t en t e erence 'nv Z - Snv Z IS a ratlOna
function of type (n + v, 2v) which has at least n + v + I zeros. Such a
rational function must be identically zero. Thus, 'niz) is uniquely determined
by its interpolation property.

Now let S C Dp be compact, and choose A, 1 < A < p, so that SeE" .
Then, for A < a < p, we have

z on S,

and, hence, from (2) and the uniform boundedness of the qn(t) on Fu , there
follows

lim [max I qiz) Qv(z)f(z) - 7Tn(z)l; Z on S]ljn ~ ,\fa.
n-->CIJ
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But (5) implies that, for n sufficiently large, Iqn(z) Q.(z)! is uniformly bounded
below by a positive constant for z on S, and so,

lim [max If(z) - rn.(z)[; Z on S]l/n :« Aja < 1.
n->oo

Finally, note that rnv(z) has v formal poles, namely, the zeros of q,,(z), and
that as n -+ 00, these poles approach, respectively, the v poles of fez) in E~ .
However, since

lim 7Tn(z)IQ.(z) = Qv(z)f(z),
n->oo

uniformly in z in a neighborhood of each of the points (Xj , it follows that, for
n sufficiently large, no zero of the polynomial 7Tn(z)IQv(z) can be a zero of
qn(z). Thus, the v formal poles of rnv(z) are actual poles. This completes the
proof of Theorem 2.

An easy consequence of the above proof is the following

COROLLARY. The rational functions rn.(z) of Theorem 2 satisfy

lim [max If(z) - r"v(z)l; z on E]l/" :« lip.
n->oo
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